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an Asymptotically Minimum Cost Network 
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Abstract-Permutation switching is a key operation in many 
computer and communication systems. The well-known BeneS 
and Waksman permutation networks can be constructed with 
an asymptotically minimum number of switches, but the best 
routing algorithms for such networks need O( ( Ig4 n/lg Ig n )  ) time 
on an n Ig n-processor computer. Other networks that can be used 
for permutation switching are Batcher’s sorting networks and 
Koppelman and Oruq’s self-routing permutation network, but 
these networks require O(nlgz n) switches and O(lg2 n) routing 
time. Using a new composite interconnection network model, this 
paper presents a self-routing permutation network with O(n Ign) 
switches and O(Ig2 n) routing time. More generally, it describes a 
permutation network with O(kn’+’’k ) cost and O(k Ign) routing 
time for any k; 1 5 k 5 Ig n. This improves Nassimi and Sahni’s 
routing algorithm that gives O(klg3 n )  routing time for the 
same cost expression. The only networks capable of permutation 
switching with O(nIgn) cost and O(lgn) routing time are the 
AKS sorting network and Upfal’s packet routing network, but 
the constants hidden in the complexities of these networks are so 
large that they remain impractical until n gets very large. 

Index Terms- Concentrator, cube network permutation net- 
work, radix permuter, radix sorting, self-routing network. 

I. INTRODUCTION 
OOSELY speaking, a permutation network is a switch- L ing structure with two finite sets of terminals, X = 

(51, x2,...,xn}, called inlets and y = { y ~ .  y2,...,yn}, 
called outlets such that, for each permutation map T between 
X and Y ,  inlet x; can be connected to outlet ~ ( z i ) ,  1 5 
z 5 n. In this paper, we consider the problem of designing 
a permutation network that has as close an optimal behavior 
as possible in three respects: It must have a) as mall a cost 
as possible, b) as mall a depth as possible, and c) as short a 
routing time as possible. The formal definitions of cost, depth 
and routing time will be given in Section 11. Here, it suffices 
to say that the cost of a network is proportional to the number 
of devices encompassing O(1gn) or fewer binary logic gates,’ 
its depth is proportional to the largest number of such devices 
that fall between an inlet and an outlet, and its routing time 
is the time it takes to determine the “behavior” of each such 
device, given a permutation T between X and Y .  
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’This is an abuse of notation. What is meant here is that the number of 

logic gates in such devices grows at most at a rate of Ig r ) .  

Variations of the permutation network problem have been 
studied in the literature. For example, the problem of designing 
a permutation network with minimum cost was posed and long 
settled in an asymptotical sense by BeneS [4] who gave an 
explicit permutation network with O ( n  lgn)  cost and O(lgn)2 
depth. Other results followed this pioneering work to improve 
the constants, e.g., see [l], [8], [22]. The asymptotical cost 
optimality of BeneS’ permutation network follows from a 
result of Shannon which states that any permutation network 
with n inlets must have R(n1gn) binary switching devices 
[19]. Moreover, it was established in [lo] that a permutation 
network with O(n1gn) cost must have R(1gn) depth so that 
the BeneS network is both cost and depth optimal in an 
asymptotical sense. 

Yet, the BeneS network has so far proven to have very poor 
routability: For an n-inlet Benes network, the best known serial 
routing algorithm, called the looping scheme [15], [22], takes 
O ( n  lg n)  time, and the best parallel routing algorithm takes 
O(lg2n)  time but on an n-processor computer with O(n2)  
connections [13]. The complexity of the routing hardware can 
be reduced to O(n lg n)  to match the cost of the network, but 
at the expense of increasing the routing time. In particular, the 
routing algorithm in [13] requires O(lg4 n/lg lg n)  time on 
a cube-connected or perfect shuffle computer with O ( n  lg n) 
processors.3 

The excessive routing complexity of the BeneS network 
can be controlled by adjoining additional paths between the 
switches in the network. In fact, this approach was used suc- 
cessfully in [l 11 to obtain a self-routing permutation network 
with O ( n l g 2 n )  cost, O(lg2n.) depth and O(lg2n) routing 
time. A more direct approach is to use Batcher’s odd-even 
merge or bitonic sorting networks [ 3 ] ,  [9] as they also have 
O(n, lg2 n,) cost and O(lg2 n,) depth and O(lg2 n)  routing time. 
It should be noted that Stone’s single-stage shuffle-exchange 
network implementation of Batcher’s bitonic sorting gives a 
permutation network with O(n.) cost and O(lg2 n)  routing 
time. However, this network cannot be pipelined, and requires 
that the data be recirculated O(lg2 n,) times along with their 
addresses. This may be especially undesirable when the data 
size is much larger than the address and could increase the 
routing time beyond O(lg2 n,). 

?All logarithms are in base 2 unless otherwise stated, and l g  r )  denotes 
log,, I ? .  I t  is also assumed that ri is a power of 2 unless otherwise stated. 

3This time complexity is obtained by solving k from I I ’ + ’ / ~  = 11 Ig 1 1 ,  

and substituting it in the time complexity expression O( k Ig3 n )  that is given 
in [13]. 
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We also note that a permutation network can be constructed 
by using certain bipartite graphs, called expanders [6], [17]. 
The AKS sorting network [ l ]  and Upfal's packet routing 
permutation network [23] are based on such graphs. Even 
though both these networks have Q n  lg n)  cost and O ( n  lg n)  
routing time, the constants hidden in the 0 notations are very 
large, making these networks impractical unless n is extremely 
large. More recently, Leighton and Maggs [ 121 and Arora et al. 
[2] reported some results that seem to improve the constants 
involved in the complexities of these networks. However, their 
results depend on random generations of expander graphs with 
small degrees, and they state in [ 121 that they were working on 
finding a good time bound on random generations of expanders 
with small degrees. 

The main result of this paper is the design of a permutation 
network with O(n1gn) cost, O(lg2n) depth and O(lg2n) 
routing time. More generally, we present a permutation net- 
work with O(knl+ l /k )  cost and O(k1gn) routing time for 
any k; 1 5 k 5 lgn.  The significance of this network is that, 
when k = lgn,  its cost is asymptotically minimum, and yet it 
does not require routing hardware that is beyond its own cost. 
In addition, its routing time matches the routing time of the 
previously known best network designs. For other values of IC, 
the permutation network of this paper outperforms the Bene5 
network with parallel routing schemes described in [13]. For 
the same cost expression, the time complexity of these parallel 
routing schemes is O(klg3n)  as compared to the O(k1gn) 
routing time of the permutation network given in this paper. 

The key concept behind our permutation network is the 
notion of radix sorting, and a new composite network model. 
Under this new model we decompose the problem of per- 
muting into two subproblems: a distribution problem and a 
concentration problem. The distribution problem is solved with 
a straightforward network that has O ( n )  cost, 0 ( 1 )  depth and 
O( 1) routing time. The concentration problem is trickier and 
is solved by sandwiching a cube network in between two sets 
of binary trees. The optimization of the cost, depth and routing 
time over the three components of this design then yields a 
concentrator with O ( n )  cost, O(1gn) depth and routing time. 
Finally combining the distribution and concentration steps 
together into a recursive construction yields a permutation 
network with O(n1gn)  cost, O(lg2n) depth and O(lg2n)  
routing time. 

The rest of the paper is organized as follows. Section I1 
states the basic notions and definitions needed in subsequent 
sections. Section I11 gives a brief overview of radix sorting 
and the structure of our permutation network. Sections IV and 
V describe the distributor and concentrator constructions used 
in this permutation network. Section VI determines the cost, 
depth and routing time complexities of this network, and the 
paper is concluded in Section VII. 

11. DEFINITIONS 

This section states some facts and definitions that are 
pertinent to a precise description of our results. 

Definition 1:  An (n ,  q)-network is a triple (G,  3, R) 
where a) S is an underlying graph with n distinguished 

nodes zo , 51, . - . , 2,- 1, called inlets, q distinguished nodes 
yo, y1,.*.,yq-1, called outlets, and finite set of nodes, 
called operation nodes; b) 3 is a set of well-defined 
computations with domain {q, $1,. . . , zn-l} and range 
{yo, 91,. . . , ~ ~ - 1 ) ;  and C) R is an algorithm, called a routing 
scheme, that defines, for any computation h E 3, the exact 
behavior of each operation node so that the tokens at the inlets 

An operation node in a network can be as simple as a 2-inlet 
switch and as complex as the network itself. In fact, all the 
networks described in this paper are recursively defined so that 
they have operation nodes that are as complex in behavior as 
themselves. 

The routing scheme of a network determines what each 
operation node must do in order to route the tokens to the 
outlets. Networks described in this paper have a particular 
routing scheme that is commonly referred to as self-routing. 

Definition 2: A network (G', 3, R) is called self-routing if 
the routing scheme R is distributed over the operation nodes, 
i.e., each operation node has its own routing scheme, and its 
behavior is determined only by its tokens and its own routing 

Remark 1:  Even though this definition does not restrict the 
size of the tokens that are processed by operation nodes, all 
networks described in this paper process tokens with O(lg n)  
bits, where n is the number of inlets to the network. This 
includes both data and destination address. 

To each network, we attach three performance parameters. 
All three parameters are defined recursively. The cost of a 
network is the sum of the costs of its constituent operation 
nodes. It is assumed that each operation node can be imple- 
mented using O(1gn) constant fanin logic gates for an n-inlet 
network. The depth of a network is the largest sum of the 
depths of its operation nodes that lie between an inlet and an 
outlet. It is assumed that the largest number of constant fanin 
logic gates between an input and outlet of an operation node in 
an n-inlet network is O(lg lg n) .  The routing time of a network 
is the largest sum of the routing times of its components that 
lie between an inlet and an outlet, assuming that the network 
is self-routing. 

For a network (S, F, R), the computations in 3 define 
the functionality of the network. In particular we will, subse- 
quently, encounter the following types of networks. 

Definition 3: An (n ,  q)-network (G ,  3, R) is called an n- 
inlet permutation network, or n-permuter, if n = q, and 3 
is the set of all permutations according to each of which the 
tokens at the inlets of the network can be routed to its outlets.]( 

Definition 4: An (n,  q)-network, where q 5 n, is called 
an (n ,  q)-concentrator, if the tokens at any k of the n inlets, 
1 5 k 5 q, can be routed to some k specified outlets. 1 1  

Remark 2: Every (n ,  q)-concentrator is an (n ,  qf)-concen- 
trator for any qf 5 q.  This fact will be needed in Section 
V. 

We note that the definition of a concentrator given here 
differs from a widely used definition of a concentrator which 
requires that the inlets be concentrated to outlets over vertex or 
link disjoint paths [6], [17]. The definition given here allows 
paths to be pipelined and shared by inlets (tokens). 

are computed to the outlets as specified by h. II 

scheme. II 
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Definition 5: An (n ,  fn)-distributor, where f is any pos- 
itive integer, is a network with n inlets and f groups of n 
outlets, 0 0 ,  0 1 , .  . ’ , Of-1 ,  such that, for any partition of the 
inlets into T O ,  T I , .  . . , T k - 1  inlets, where T O ,  T I , .  . . . ~ k - ~ .  1 5 
k 5 f ,  are arbitrary integers satisfying ro+q +. . . + T ~ - I  = n, 
the tokens that belong to the set of T,  inlets can be routed to 

Definition 6: Let the inlets of an n-inlet network be labeled 
0, 1, . . . , n - 1. The rank of a token at inlet i is the number 
of tokens that occupy inlets that are less than i. An (71 .  n)- 
network is called an n-ranker, or n-inlet ranking circuit, if it 
returns the rank of the token at its ith inlet to its ith outlet for 
0 5 z 5 n - 1. The outlets that correspond to inlets without 

Definition 7: An (n ,  n)-cube network, where n is a power 
of 2, is recursively formed by cascading two (72/2. n/2)-cube 
networks with a stage of n/2(2, 2)-switches such that one inlet 
of each switch is connected to one (n/2. n/2)-cube network, 
and its other inlet is connected to the other (n/2.  n/2)-cube 
network. When the (n/2, n/2)-cube networks are recursively 
decomposgd then an (n,  n)-cube network consists of lg n 
stages each with n/2(2, 2)-switches. A detailed description 
of cube networks can be found in [ l l ] ,  [14], [16], [20]. 1 1  

some T ,  outlets in 0, for i = 0, 1,. . . , k - 1. I I  

tokens are left unspecified. II 

111. RADIX PERMUTERS 
Given a set A of binary numbers, each with b =lgn bits, 

divide them into two sets Ao and A1 where A0 is the set 
of numbers whose most significant bits are 0, and A1 is the 
set of numbers whose most significant bits are 1. Repeat this 
process for the second bit, and let Aoo, Aol.  Ala. Al l  denote 
the sets of numbers whose leftmost two bits are 00. 01. 10. 11 
in that order, and iterate it for the remaining bits, each time 
dividing the numbers in each set into two other sets. If 
A = (0, 1,. + . , n - 1) then the set A,,- ,  ,,-, , where 
ab-1, a b - 2 ,  . . . , a b - s  E (0, I}, 1 5 s 5 b, consists of exactly 

numbers whose leftmost s bits match ab-1 ab-2 . . . 
We call this set an index set of A of degree R, and call 
ab-1 a b - 2 .  . . a b p s  its index. In particular, A , , - , .  .,, ,,, is a 
singleton set containing the number ab-1 . . . al ao, and the 
numbers in A are sorted in ascending order into the sets 

The most obvious application of radix sorting to permutation 
network design is obtained by cascading two groups of 11 

binary trees back to back as shown in Fig. 1. The roots of 
the n binary trees in the first group correspond to the inlets of 
the network, and the roots of the n binary trees in the second 
group correspond to its outlets. The leaf nodes of the first group 
of binary trees are connected to the leaf nodes of the second 
group of n binary trees in such a way that each leaf node in 
each binary tree in the first group meets with a leaf node in 
a distinct binary tree in the second group. This is effectively 
equivalent to the radix sorting process outlined above where 
the leaf nodes of the first group of binary trees correspond to 
the index sets of A of degree lgn.  More generally, the upper 
four nodes at the first level (Le., the upper four child nodes of 
the root node) correspond to the index set A0 and the lower 
four nodes correspond to the index set A I ,  the four groups 

2 6 - 5  

A o o , . . ~ ,  A00 . . . I ,  . . . , All  . . . I .  

0 0 
1 1 
2 2 
3 3 

Fig. 1. A 4-inlet permutation network using radix sorting. 

of four nodes at the second level correspond to the index sets 
Aoo, Aol, Ala, A l l ,  and so on. 

Routing on this network proceeds as follows: Each token 
that enters the network at an inlet has a destination address 
that identifies the outlet it wants to reach. Accordingly, routing 
a permutation over this network amounts to decoding the des- 
tination addresses of the tokens over the binary trees. The first 
set of binary trees are used to distribute the tokens to the right 
index sets. Once the tokens reach the leaf nodes of the first 
group of binyy trees (i.e., the index sets Aoo. Aol .  Alo,  A l l )  

then the second group of binary trees route these tokens to 
the desired outlets. 

The main idea of the radix sorting scheme outlined 
above is to keep separating the tokens into disjoint index 
sets until they find their destinations in the index sets 
A00 ...o, Aoo. . . l , . .  . , A l l , . . l .  To accomplish this, a path is 
made available between each inlet and all such index sets 
to which a token that enters the network at that inlet may 
potentially belong. However, since there are only n tokens 
propagating through the network at any given level in time, 
some of these paths are wasted. For example, in the network 
of Fig. 1, each inlet has a path to four index sets at the second 
level even though any token entering the network at that inlet 
can belong to only one of the index sets at that level. Call 
those inlets (outlets) in a given level that hold tokens live 
inlets (outlets). The fact that only some of the inlets or outlets 
are live at each level suggests that we may reduce the cost of 
the network construction given in Fig. 1, by “concentrating” 
the tokens in the live outlets. We formalize this idea in the 
form of a recursive network construction that is called a radix 
permuter, and shown in Fig. 2. Without loss of generality, 
we assume that n is a power of 2, and let f = 2‘; 1 5 s 5 
l gn  be a positive integer which, obviously, divides n. The 
first stage of the network encompasses an (n,  fn)-distributor, ’ 

the second stage consists of f (n ,  n/ f)-concentrators, and the 
third stage consists of f n /  f -radix permuters. The parameter 
f is called the funout factor of the permuter. 

Each group of n outlets of the (n ,  f n)-distributor represents 
an index set of degree s which is identified by a distinct s-bit 
code. The distributor routes a token to an outlet in an index 
set if and only if the leftmost s bits in the destination address 
of that token match the degree of that index set. Thus, the 
distributor routes a total of n,/2‘ = n/ f tokens to each index 
set, and the remaining n - n/ f outlets in each index set just 
float. 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore.  Restrictions apply.



I 
1472 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 12, DECEMBER 1993 

Fig 2 An (n. n )  radix permuter 
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(a) 

MSB 

01 
r.h.tin.tion 
a d d m r  

01 
11 
00 

(f /2)n - 1 

Fig. 3. An ( 1 1 .  f n )  distribution network, f = 2 2 .  ,\ 2 1 

The concentrators in the second stage map the tokens at the 
live outlets in each index set onto the inlets of the permuter 
in the third stage with which it is cascaded. Once the tokens 
reach the inlets of the permuters on the right, they can then 
be permuted onto their final destinations as desired. Thus, the 
tokens entering the network at the inlets of the distributor 
on the left can be mapped onto the outlets of the radix 
permuters on the right in any one of 71! ways. Furthermore, 
since the distributor and concentrators in the construction are 
self-routing then the entire network can realize its permutations 
in a self-routing fashion as well. Hence, the following theorem. 

Theorem I: For all n, = 2 a ,  where i is a positive integer, the 
network given in Fig. 2 is a self-routing permutation network. 

To complete our construction of a self-routing permuta- 
tion network, we next describe how to construct self-routing 
distributors and concentrators. 

IV. A SELF-ROUTING DISTRIBUTOR 

As a self-routing distributor, we shall use the simple re- 
cursive network construction shown in Fig. 3.  When fully 
decomposed, this network consists of 1 x 2 demultiplexers 
as shown in Fig. 4(a) for ri = 4 and .f = 4. The tokens are 
routed to their destinations through the distributor in a self- 
routing fashion by decoding the leftmost lg f bits of their 
destination addresses from left to right as illustrated in Fig. 

” \- 11 
LSB=1 L 

(b) 

Fig. 4. A fully decomposed (4,16) distributor, (a) Distributor structure. 
(b) Illustration of distribution. 

4(b) for n = 4 and f = 4. It is immediate that this node by 
node decoding scheme generalizes to any n = 2a, i 2 1 and 
f = 2“. s 2 1 and so this distributor is self-routing. 

Let C D I ~ ( ~ ,  f n )  denote the number of 1 x 2 demultiplexers 
in a fully decomposed (n ,  fn,)-distributor. Then, given that 
each 1 x 2 demultiplexer has unit cost, Fig. 3 reveals that 

C D I S ( n .  f n , )  = n* + 2 C D I S ( n ,  ( f / 2 ) n * )  (1) 

and the solution of this recurrence with the boundary condition 
C ~ l s ( n .  an,) = n, yields (observe that an (n. 2n)-distributor 
is just a set of n, 1 x 2 demultiplexers) 

CDIs(n. f n , )  = ? ? ( f  - 1). ( 2 )  

Let D ~ l s ( n .  f n , )  denote the depth of this distributor. Then, 
given that each 1 x 2 demultiplexer has unit depth, it is 
immediate from Fig. 3 that 

D D I S ( n .  f n )  = 1 f D D I S ( n ,  ( f / a ) n )  (3) 

1 
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Fig. 5. A self-routing concentrator. 

Moreover, the distributor can be routed by first deciding the 
settings of the 1 x 2 demultiplexers in Fig. 3, and then 
recursively applying the same routing scheme to each of 
the two (n,  nf/2)-distributors on the right. Let To l s (n ,  f n )  
denote the routing time of an (n,  fn)-distributor. Since each 
1 x 2 demultiplexer can be set independently in unit time by 
examining a single bit in the destination address of the token 
it receives, we have 

.ToI s (n ,  f n )  = DDIS(n, f n )  = lgf = 3. (5 )  

, 

v. CONSTRUCTION OF A SELF-ROUTING CONCENTRATOR 

The construction of a self-routing concentrator with a short 
routing time is trickier than that of a self-routing distributor. 
Previously reported concentrators have linear cost and loga- 
rithmic depth [6], [17], but very little is known about how to 
route such concentrators, let alone match their routing times 
with their depths. In what follows we give a concentrator 
construction that has a linear cost, logarithmic depth and 
routing time. This is the first known explicit construction of 
such a concentrator. 

This concentrator is obtained by sandwiching an n/m-inlet 
cube network, where m divides n, in-between two sets of 
binary trees, each with m leaf nodes, as shown in Fig. 5. Each 
of the binary trees on the left-hand side of the cube network is 
called a selection tree and each of those on the right is called 
a distribution tree. Another binary tree, called a ranking tree, 
is prestaged to this construction for ranking the live inlets 
(tokens) as was done in [5] and [lo]. 

The n/m-inlet cube network consists of lg(n/m) stages 
of n/2m 2 x 2 switches. Noting that each 2 x 2 switch can 
be formed by cascading two 1 x 2 demultiplexers with two 
2 x 1 multiplexers, the cost of an n/m-inlet cube network 
is (2n/m)lg(n/m), and its depth is 21g(n/m). Each of the 
selection and distribution trees has m leaf nodes, where m 5 n 
is some positive number whose value will be determined later 
in order to keep the cost of the concentrator linear and its depth 
logarithmic in its number of inlets. The nodes in the selection 
trees are 2 x 1 multiplexers, and those in the distribution trees 

are 1 x 2 demultiplexers, each with a single bit control inlet. 
Given that each 2 x 1 multiplexer and 1 x 2 demultiplexer 
has unit cost and unit depth, it is obvious that each selection 
(distribution) tree has m - 1 cost and Ig m depth. 

For n inlets, the ranking tree has O(n) cost and O(1gn) 
depth, and is identical to the ranking circuit of Y-units 
described in [lo]. 

With the assumptions above, let Ccolv(n:  m) and 
D c o ~ ( n  : m) denote the cost and depth of this concentrator.“ 
Upon summing the costs of the constituent components of the 
concentrator, we find that 

CcoN(n : m )  = n - 1 + 2?(m - 1) + -1g- 2n 
n 

m m m  (6) 
2n n 
m m  

5 3n + -1g-. 

Similarly, we find that 

(7) 

(8) 

= 3Ign.  (9) 

n 
D c o N ( n :  m)  = I g n + 2 I g m + 2 I g -  m 

For the particular case, m = Ign, we obtain a concentrator 
with 

\ 

Ccox(n: m )  5 5n  (10) 
Dco,v(n:  m )  = 3Ign .  (11) 

The cost and depth bounds are satisfactory, but to obtain a log- 
arithmic routing time we must yet prove that this concentrator 
can be routed in O(1gn) time, not just have O(lgn) depth. 

To establish this, we first note that the concentration on 
this network proceed in two “phases”: the first phase involves 
ranking the live inlets and can be done in O(1gn) time by the 
ranking circuit as described in [lo]. In the second phase, the 
ranks of the live inlets are used to route the tokens at those 
inlets to consecutive outlets on the right-hand side starting 
with the topmost outlet. A n  example illustrating both phases 
is depicted in Fig. 6 for n = 16, and m = 4, where the tokens 
marked “L” on the left denote the live inlets. 

To keep the routing time small, we will describe two parallel 
routing schemes. The first one allows exactly one token from 
each of the selection trees to start its trip towards its outlet with 
the provision that tokens from different selection trees may 
start in parallel. This ensures that no conflicts arise within a 
selection tree, but there can be conflicts once the tokens reach 
the inlets of the cube network since two or more tokens may 
be destined to outlets in the same distribution tree. In general, 
conflicts will occur any time two tokens arriving at a switch in 
the cube network must exit from the same outlet of that switch. 
The goal is to route the tokens through the cube network as 
fast as possible despite such conflicts. 

In the second routing scheme, we introduce further paral- 
lelism by pipelining the tokens through the selection trees. In 
this case, conflicts may also occur at the nodes of the selection 
trees. We resolve such conflicts by letting the token at the 

4This notation should not be confused with C c o ~ ( n ,  q),  or 
Dco,v(n ,  q). where q denotes the number of outlets. The argument 
m in these expressions specifies a design parameter, not the number of 
outlets. 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore.  Restrictions apply.



1474 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 12. DECEMBER 1993 

Lhr. 
Inlets 

1 

0 
1 

2 

3 

4 

5 

6 

7 

8 

Live 
OUtlas 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 

Fig. 6. Illustration of routing on the concentrator. 

upper child node go first. As for the conflicts at the switches 
in the cube network, if two tokens arriving at a switch in the 
cube network want to exit at the same outlet then the lower 
token proceeds first. These two conventions will be referred 
to as the upper child priority and lower inlet priority routing 
schemes. In both cases, once a token reaches the root of a 
distribution tree it then uses the rightmost lg m bits of its rank 
to route itself to the right outlet. The decoding of the rank 

semi-pipelined scheme, the conflicts are resolved exactly the 
same way, except the timing is different.) The letters denote 
the various points in the overall network and the entries in the 
table indicate the locations of the tokens at a given time. For 
example, the token 0 is at Point A at time 1, and at Point G 
at time 2, at Point K at time 9, etc. 

A. semi-PiDelined 
bits is done on a node by node basis as the token proceeds 
towards its outlet through the tree. If the current bit is 0 then 
the token moves over to the upper child node, if it is 1 it 
moves over to the lower child node. It should be obvious that 
tokens cannot run into any conflicts as they are routed through 
the distribution trees. It should also be obvious that with these 
conventions, tokens are self-routed through all components of 
the concentrator. 

We call the above two parallel schemes semi-pipelined and 
fully-pipelines routing schemes. We shall prove that in the 
semi-pipelined routing scheme, the conflicts can be resolved 
and all tokens can be routed in O(lg2 n)  time, and in the fully 
pipelined routing scheme, the same can be done in O(1gn) 
time. We first give an example to illustrate our conventions 
of resolving conflicts. The table on the righthand top corner 
of Fig. 6 indicates the flow of tokens through the selection 
trees and cube network in the fully pipelined case. (In the 

Y 

To prove that this procedure works and takes O(lg2 n)  time 
in the semi-pipelined case we need to establish some facts 
about rank patterns and the routing structure of the cube 
network. At the outset, we should emphasize that the ranks 
computed by the ranking tree determine the outlets of the 
concentrator to which the tokens at its live inlets are routed. AS 
such, we will, occasionally, refer to these ranks as destination 
tags within the concentrator. 

Definition 8: A rankpattern over the inlets of the selection 
trees in Fig. 5 is an ordered assignment of consecutive integer 
values 0, 1, 2, . . . to the live inlets such that the topmost live 
inlet is assigned rank 0, the next topmost live inlet is assigned 
1, etc. The ranks of the remaining inlets are marked with 

Definition 9: An induced rank pattern of degree lg(n/m) 
is a rank pattern whose entries are obtained by retaining the 
leftmost lg( n/m) bits in the corresponding ranks. For example, 

dashes (see Fig. 6). II 
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for the rank pattern shown in Fig. 6, the induced rank pattern 

Definition 10: A sample induced rank pattern of degree 
lg(n/m) is an ordered set of induced ranks whose ith element 
is selected from the group of induced ranks that belong to 
the ith selection tree. If each rank selected is associated with 
a live inlet then the sample induced rank pattern is called 
complete, and is otherwise called incomplete. For example, 
for the induced rank pattern -0--00--0111- 122,0001,0012 
and 0002 are all complete sample induced rank patterns, and 

As stated before, the ranks computed by the ranking tree 
specify the destination tags of the tokens. The induced rank 
patterns, retaining only lg(n/m) leftmost bits of these tags 
identify the actual distribution trees to which the tokens 
belong. Our goal is to route the tokens located at the live 
inlets of the selection trees to their destinations at the outlets 
of the distribution trees. To do this, we shall decompose the 
induced rank patterns into sample induced rank patterns in 
which the adjacent induced ranks differ by at most one. Each 
such sample induced rank pattern identifies a unique set of up 
to n/m live inlets, one from each selection tree. The tokens 
identified by the induced ranks in these sample induced ranks 
patterns are then routed set after set through the cube network 
onto the root nodes of the distribution trees. Once the tokens 
reach the root nodes of the distribution trees, they then get 
routed to their exact outlets by using the rightmost lg m bits 
in their destination tags. 

We shall subsequently establish that any induced rank 
pattern can be decomposed into a set of sample rank patterns 
in which the adjacent induced ranks differ by at most one. 
First we show that any set of tokens identified by such a 
sample induced rank pattern can be self-routed through the 
cube network portion of the concentrator in a pipelined fashion 
in O(m + Ig(n/m)) time. 

Theorem 2: The tokens associated with any sample induced 
rank pattern of degree lg(n/m) in which the induced ranks at 
adjacent positions differ by at most one can be self-routed 
through an n/m-inlet cube network in O(m + lg(n/m)) 
time. 

Proof: Let R, and R1 be the induced ranks of two tokens 
that enter an arbitrary but fixed switch in stage i, 0 5 i 5 
(lg(n/m)) - 1, of the cube network at its upper and lower 
inlets, respectively. Let r,, i and r1, i denote the ith bits of R, 
and R1, respectively. Given that some sampled induced ranks 
may be incomplete, there are four cases to consider. If both 
R, and R1 are "-"'s then neither inlet of the switch has a 
token, and so it may arbitrarily be set to either the identity or 
transpose state. If only R, is a "-" then only the lower inlet 
has a token, and so the switch is set by r1,i and likewise if 
only R1 is a "-" then it is set by r,,i. The last case is that 
neither R, and R1 is a "-". In this case, if ru,i = 0, and 
r1,i = 1 then the switch is set to the identity, and if T , , ~  = 1, 
and r1,i = 0 then the switch is set to the transpose state. We 
further show that the other two cases, i.e., r,, i = r1, i = 0, or 
r,,i = rz,i = 1, are impossible except when R, = R1. First, 
for i = 0, by the hypothesis, the adjacent induced ranks differ 
by at most one, and hence, they must either be identical, or they 

of degree 2 is -0--00--0111-122. I1 

-012 is an incomplete sample induced rank pattern. I1 

must differ in their rightmost bit positions, Le., r,,i # r1,i. 

Suppose, for some i; 1 5 i 5 (lg(n/m)) - 1, some two tokens 
with induced ranks R, and R1 enter a switch in stage i. As 
argued in [lo], this implies that the rightmost i bits of R, and 
R1, Le., bits 0, 1,. . + ,  i - 1, must be identical. Furthermore, 
the two tokens must have originated from some two inlets 
that belong to a set of 2i+1 consecutive inlets. Given that any 
two adjacent induced ranks may differ by at most one, this 
implies that IR, - R11 5 2i+1 - 1, and so R, and R1 cannot 
differ in bit positions (lg(n/m)) - 1, (lg (n lm) )  - 2, .  . . , z + 1 
either. Therefore, either R, = R1, or they must differ in bit 
position i as was to be shown. Thus, the only way that two 
tokens can conflict at a switch is when both have identical 
induced ranks. Consequently, a token with an induced rank in 
a sample induced rank pattern in which the adjacent induced 
ranks differ by at most one can be in conflict with no more 
than the number of tokens with that same induced rank. But 
this is bounded by the number of outlets of a distribution tree, 
which is m. Since the depth of the (n/m)-cube network is 
lg(n/m), and the routing time of each switch is constant, we 
conclude that tokens associated with any such sample induced 
rank pattern can be self-routed through the cube network in 

0 
Given this fact, the only task that remains is to establish 

that any induced rank pattern of degree lg(n/m) can be 
decomposed into a set of sample induced rank patterns such 
that the adjacent entries in each sample induced rank pattern 
differ by at most one. The existence of such a decomposition 
is facilitated by the following results. 

Proposition I: The induced ranks associated with live inlets 
in any sample induced rank pattern are in nondecreasing order. 

Proposition 2: In any distribution of tokens to the inlets of 
the selection trees in Fig. 5, every set of m tokens with the 
same induced rank, except that set of tokens with the largest 
induced rank, has cardinality m. 

0 
Proposition 3: Any two induced ranks that belong to any 

k ,  1 5 k 5 n/m, consecutive selection trees, each with m 
inlets, can differ by at most k .  

Proof: Suppose that in some k consecutive selection 
trees there are two induced ranks that differ by k + 1 or more. 
Then these k selection trees must have more than mk tokens 

Theorem3: Given any induced rank pattern, the induced 
ranks associated with the topmost tokens in any two adjacent 
selection trees differ by at most one. 

Proof: By Proposition 3, any two induced ranks in any 
two adjacent selection trees STi and STi+l can at most differ 
by two. If they differ by zero or one then there is nothing 
to prove. On the other hand, if they differ by two then it is 
easy to see that the two selection trees must contain three 
consecutive induced ranks R,, R, + 1, R, + 2. However, by 
Proposition 1, the induced rank of the topmost token of STi 
must be R,. Also, given that R, + 1 is not the largest induced 
rank, by Proposition 2, there must be m tokens with induced 
rank R, + 1 distributed over ST; and STi+l. Furthermore, 
since induced ranks are assigned to tokens in nondecreasing 

O(m + lg (n lm))  steps. 

Proof: It is obvious. 0 

Proof: It follows from Proposition 1. 

which is impossible. 0 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore.  Restrictions apply.



1476 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 12, DECEMBER 1993 

order, the induced rank of the topmost token in STi+l must 
be R, + 1, and the statement follows. 0 

Proposition 4: Given two adjacent selection trees STi and 
ST;+1 suppose that STi has tokens with induced ranks R, 
and R, + 1, and STi+l has tokens with induced ranks R, + 1 
and R, + 2. Let Nx,i be the number of tokens in ST; 
with induced rank R,, and let Nx+l,  i and Nx+l, i+l  be the 
numbers of tokens with induced rank R,+1 in STi and STi+l, 
respectively. Then N,, i 5 Nx+l,  i + l .  

Proof: Since R, + 1 is the middle induced rank, by 
Proposition 2, N,+l,i + Nx+l,i+l = m. Also, Nx+l,i  + 

0 
Theorem 4: Given any induced rank pattern of degree 

lg(n/m). If we remove the induced rank associated with 
the topmost token from each of the selection trees, then the 
remaining induced ranks form an induced rank pattern in 
which the induced ranks of the topmost tokens in any two 
adjacent selection trees differ by at most one. 

N,, i 5 m, and the statement follows. 

Proof: It follows from the previous two results. 0 
These results establish that any induced rank pattern of 

degree lg(n/m) can be decomposed into a sequence of sample 
induced rank patterns in which two adjacent induced ranks 
differ by at most one. By Theorem 2, each of these sample 
induced rank patterns can be self-routed through the cube 
network in Fig. 5 in O(m + lg(n/m)) steps. Moreover, the 
tokens associated with the induced ranks in each sample 
induced rank pattern can be routed to the roots of their 
respective selection trees in lg m steps by using the upper 
child priority routing scheme. (It is easy to see that this scheme 
ensures that the topmost (smallest) token reaches the root.) It 
will take additional Ig m steps to route the group of tokens 
associated with each sample pattern through the distribution 
trees to their outlets. This can also be done on a self-routing 
basis, this time using the rightmost l g m  bits of the ranks in 
the sample induced rank pattern. Finally, since each selection 
tree has at most m tokens, the number of sample induced 
rank patterns in a decomposition of any induced rank pattern 
is at most m. Thus, assuming that the routing is done in 
a semi-pipelined fashion (i.e., only the routing of tokens in 
the cube network is pipelined) and combining and ranking 
and concentration steps described we have established the 
following theorem. 

Theorem 5: Under the semi-pipelined routing scheme, the 
network in Fig. 5 can concentrate the tokens with any rank 
pattern on a self-routing basis in O(lgn+m(lgm+lg(n/m)+ 
m)) time. o 

In particular, we have the following corollary. 
Corollary 1:  When m = lg n, the network given in Fig. 5 

has O ( n )  switches and it can concentrate the tokens with any 
rank pattern on a self-routing basis in O(lg2 n) time. 0 

B. Fully Pipelined Routing 

The routing time can be reduced to O(1gn) by using the 
fully pipelined routing scheme defined earlier. In this case, 
conflicts may occur among tokens with nonidentical ranks in 
the selection trees as well as tokens with identical induced 
ranks at the switches in the cube network. We resolve the 

conflicts in the selection trees by using the upper child priority 
scheme, and those in the cube network by using the lower inlet 
priority routing scheme. In order to show that this results in 
O(1gn) routing time, it suffices to prove that any conflicts in 
the cube network are limited to those tokens with identical 
induced ranks. This is because, if we have only such conflicts 
then a token need not wait any more than m time units to reach 
its destination (recall that there are at most m tokens with 
the same induced rank), not counting the depth of the path it 
travels on. Since the depth from the inlets of the selection trees 
to the outlets of the distribution trees is 2 lg m + 2 lg(n/m), 
and the routing proceeds in a fully pipelined fashion, the last 
token within any group of tokens with the same induced rank 
should reach its destination in 2 lg m + 2 lg(n/m) + m time. 
Letting m = l g n  then yields the desired O(1gn) time. 

What remains to be shown is that no two tokens with distinct 
induced ranks can be in conflict at the switches in the cube 
network. The following results establish this claim. 

Proposition 5: If any two inlets I, and I ,  of the cube 
network meet over any two paths through the network at a 
switch in stage i , O  5 i 5 (lg(n/m)) - 1, then 11, - I,[ < 
2%+l. 

Proof: By the structure of the cube network, any switch 
in stage i can be reached by no more than 2i+1 consecutive 
inlets. Therefore, for any two inlets I,, I, that are in this set 
of consecutive inlets, it must be that 11, - Iyl < 2i+1.  0 

Proposition 6: Given any two tokens with distinct induced 
ranks R, and R, and located at two inlets I, and I, of the 
cube network, respectively, if IR, - R,I 5 ) I ,  - I,[ then the 
two tokens can never be in conflict at any switch through the 
network. 

Proof: Suppose that a token with induced rank R, is in 
conflict with a token with induced rank R, at a switch in 
stage i .  Since both tokens are routed to the same switch, the 
rightmost i bits of R, and R,, i.e., bits 0, 1,. , i - 1, must 
be identical. Now, by the hypothesis, IR, - R,I 5 11, - Iyl 
and so by Proposition 5, IR, - R,( < 2i+1. This means 
that R, and R, cannot differ in any of the bit positions 
i + 1, i + 2 , .  . . ,lg(n/m) - 1. Given these and the fact that 
R, # R,, R,, and R, must differ in bit position i ,  and since 
the switches in stage i are set by bit i the statement follows.0 

Theorem 6: If all the tokens in a selection tree have the 
same induced rank R, then none of those tokens can be in 
conflict with a token whose induced rank is other than R, as 
they are routed through the cube network. 

Proof: Let a token T, with induced rank R, be located 
at inlet I, of the cube network @e., T, belongs to selection 
tree S T I ~ ) ,  and consider another token T, with induced rank 
R, that is located at inlet I,. Since all the tokens that belong 
to the selection tree STI= have the same induced rank, the 
number of live tokens that belong to the selection trees in- 
between STI= and S T I ~ ,  (excluding S T I ~  and S T I ~ ) ,  must 
be less than or equal to (IR, - R,I - 1)m. Since the number 
of tokens (Le., live inlets) that belong to these selection trees 
must be less than or equal to the total number of inlets they 
have, we must have (11, - I,)) - 1)m 2 (IR, - R,1 - l)m, 
or 11, - I, I 2 I R, - R, 1. Hence, the statement follows from 
Proposition 6. 0 
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This theorem proves that if the induced ranks of all tokens 
in a selection tree are the same then these tokens cannot be in 
conflict with any tokens as they are routed through the cube 
network except with those whose induced ranks are the same 
as their own. We next consider the case when tokens in a 
selection tree may have different induced ranks. 

Lemma 1: Suppose that, in routing the tokens through the 
cube network, if any time two tokens entering a switch conflict, 
the token at the lower inlet goes first. Then if any two tokens 
T, and T, initially located at any two inlets I, and I,, where 
I, < I,, conflict at a switch then token T, always exits that 
switch first. 

Proof: It is immediate from the structure of the cube 
network that every pair of its tokens meet at most once at 
some predetermined switch. Let T, and T, be two tokens 
that enter a switch at its upper and lower inlets, respectively. 
Because of the recurring structure of the cube network, T, and 
T, must have originated from some two inlets I, and I, where 
I, < I,. Combining this fact with the hypothesis proves the 
statement. 0 

Lemma 2: Given two selection trees ST; and sTi+k- 1 ,2  5 
k 5 ( lgn/m) - i ,  0 I: i 5 ( lgn lm)  - 2, suppose that ST; has 
tokens with induced ranks R, and R, + 1 and STi+k-l has 
tokens with induced ranks R, + k - 1 and R, + k .  Let N, be 
the number of tokens with induced rank R, in selection tree 
STi, and N,+b-l be the number of tokens with induced rank 
R, + k - 1 in selection tree STi+k-l. Then N, 5 N,+k-I. 

Proof: This is an immediate generalization of Proposi- 
tion 4. 0 

Theorem 7: Suppose that all tokens with an induced rank 
R, are distributed over a set of selection trees such that the 
topmost selection tree in the set also contains tokens with 
induced rank R, - 1 and the bottommost selection tree in the 
set also contains tokens with R, + 1 in addition to R,. If the 
conflicts between the tokens in the selection trees are resolved 
using the upper child priority routing scheme, and the conflicts 
between the tokens with the same induced rank at the switches 
of the cube network are resolved using the lower inlet priority 
routing scheme than all those tokens with induced rank R, 
that do belong to the topmost or bottommost selection tree 
will never be in conflict with any tokens with induced ranks 
other than R, as they are routed through the cube network. 

Proof: We consider two cases. First consider any token 
T, with induced rank R, in the bottommost selection tree. Let 
T, be any token with some arbitrary but fixed induced rank 
R, # R,. Suppose that T, and T, are located at inlets I, and 
I,, respectively. If R, < R, then it it can be shown as in the 
proof of Theorem 6 that R, - R, 5 11, - I,[, and hence, by 
Proposition 6, T, cannot be in conflict with Ty at any switch 
in the cube network. Now suppose R, > R,, and assume that 
I, - I, = k - 1, for some k ;  2 5 k 5 (Ig(n/m)) - 1. If 
R, - R, 5 k - 1 (recall that by Proposition 3, R, - R, 5 k ) ,  
then, by Proposition 6, T, cannot be in conflict with T,. So, 
suppose that R, - R, = k. Then it is easy to see that R, is the 
smaller induced rank in S T I ~  and R, = R, + k is the larger 
induced rank in STr, . Therefore, by Lemma 2, the number of 
tokens with induced rank R, in STis is less than or equal to 
the number of tokens with induced rank R, - 1 = R, + k - 1 

in STI,, k = 2, 3, . . . ,lg(n/m) - 1. Now, since the conflicts at 
the switches in the cube network are resolved by the lower inlet 
priority routing scheme and STrs is the bottommost selection 
tree containing tokens with rank R,, Lemma 1 ensures that 
T, never has to wait for any token with induced rank R, and 
that belongs to any other selection trees. In addition, involving 
the upper child priority routing scheme for the tokens in the 
selection trees ensures that all tokens with induced rank R, 
should enter the cube network after all the tokens with induced 
rank R, - 1 in selection tree STr,. Thus, given that the number 
of tokens with induced rank R, in STrS is less than or equal 
to the number of tokens with induced rank R, - 1 in STrY, 
and those tokens in S T I ~  with induced rank R, can never 
meet with a token with induced rank R, at a switch in the 
cube network, and therefore, they cannot be in conflict with 
any such token as was to be proved. The second case, Le., 
when the tokens with induced rank R, belong to the topmost 
selection tree among all those containing such tokens, is argued 

0 
Combining Theorems 6 and 7, we have the following 

theorem. 
Theorem 8: If, in routing tokens through the network in Fig. 

5, the upper child priority routing scheme is used to resolve 
conflicts in the selection trees and the lower inlet priority 
routing scheme is used to resolve conflicts in the cube network 
then any two tokens with distinct induced ranks can never be 

0 
Remark 3: The main point of Theorem 8 is that the conflicts 

among tokens are limited to those of a given induced rank. 
Therefore, if the tokens are routed using the fully pipelined 
scheme, the last token should exit the cube network in no 
more than m+lg(n/m) steps once it reaches an inlet of the 
cube network. Combining this with the ranking, selection and 
distribution steps,it takes no longer than 2 lg n + 2 lg m + 
21g(n/m) + m time to route all live inlets to their final 
destinations at the outlets of the distribution trees. 0 

We have thus proved our main result. 
Theorem 9: Using the fully pipelined routing scheme, the 

network in Fig. 5 can concentrate any pattern of live inlets on 
a self-routing basis in 2 lg n + 2 lgm + 2 lg(n/m) + m time.0 

In particular, combining this result with (10) and (11) we 
have the following corollary. 

Corollary 2: When m = lgn,  the network given in Fig. 5 
has 5 5n cost, 3 lg n depth, and it can concentrate any pattern 

0 
Remark4: Since this network is a (n,  n)-concentrator, in 

lieu of Remark 2, we have constructed an (n,  yn)-concentrator 
with 5 5n cost, 3 lg n depth, and 5 4 lg n routing time for any 

' 0  

similarly and hence the statement follows. 

in conflict at any switch in the cube network. 

of live inlets in 5 5 lg n time. 

y ; o  < y 5 1. 

VI. PERFORMANCE ANALYSIS 

Given the preceding results in this section, we determine the 
cost, depth and routing time of the radix permuter described 
in Section 111. Earlier we established that 
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and5 

Ccodn ,  F) 5 5 n  (15) 
Dconr(n, rn)  5 31gn (16) 
Tcolv(n, rn)  5 5 l g n  (17) 

for any f ; 2  5 f 5 n, and y;O < y 5 1. 
Let C ~ p ( n ) , D ~ p ( n ) ,  and T ~ p ( n )  denote the cost, depth 

and routing time of the radix permuter shown in Fig. 2 in that 
order. Using these facts, we establish the following theorem. 

Theorem 10: 

CRp(n) = O(knl+l /k )  (18) 
D R P (  n)  = o( lg n)  (19) 
T R P ( n )  = O ( k  lg .) (20) 

for each k ; l  5 k 5 lgn.  

for any f = 2 " , l  5 s 5 lgn,  
Proof: From the construction of RP(n) (refer to Fig. 2), 

C R P ( n )  = C D I S ( n ,  fn )  f f C C O N ( n ,  n / f )  + f C R P  . ( f  ) 
Upon replacing C ~ l s ( n ,  fn) with the right-hand side of 
the first expression in (12), and noting, from (15), that 
C C O N ( n ,  n/f) 5 5n, we have 

It is easy to show that the solution of this recurrence after k 
iterations, and under the boundary condition n/ f IC = 1 and 
C R p ( 1 )  = 1 yields 

C ~ p ( n )  5 6n  f IC + f = 6kn1+l/IC +n ,  (21) 

for any k ;  1 5 k 5 Ign. Likewise, from the construction of 
RP(n) 

D R P ( n )  = D D I S ( n ,  fn )  + D C O N ( n ,  n / f )  + D R P  ( f )  * 
Upon substituting D D I S ( ~ ,  f n )  and D c o N ( ~ ,  n / f )  from 
(13) and (16) we have 

DRp(n)  5 S + 3 i g n  + D R R  s (?) 
It is easy to show that the solution of this recurrence after k 
iterations, and with the boundary condition n / f k  = 1 (Le., 
l g n  = k s )  and D ~ p ( 1 )  = 1 yields 

5 l g n  + 3 k l g n  + 1 = (3k + 1)lgn + 1 

5 4k lgn  + 1. (22) 

Since the routing times of the distributor and concentrator 
components of the network are of the same order as their 
depths, (20) also follows. 0 

In particular, we have the next corollary. 
5 T ~ ~ ~ ( n ,  rn)  denote the routing time of an ( n ,  ?n)-concentrator. 

Corollary 3: If f = 2 (i.e., k = lgn)  then upon recursively 
decomposing the radix permuter in Fig. 2 lg n times we obtain 
a self-routing permutation network with O( n lg n)  cost and 
O(lg2 n)  depth, and O(lg2 n)  routing time. 

VII. CONCLUDING REMARKS 

The paper presented a permutation network with O ( n  lg n)  
cost, O(lg2 n)  depth, and O(lg2 n)  routing time. More gen- 
erally, the paper has obtained a permutation network with 
O ( / ~ n ' + l / ~ )  cost, and O(k1gn) routing time for any k ,  1 5 
k 5 lgn.  This improves the routing algorithm in [13] that 
gives O ( k  lg3 n)  routing time for the same cost expression. 

The key component of this network is a linear cost self- 
routing concentrator that is obtained by scaling down an 
n-inlet cube network to an n/lgn-inlet cube network, and 
sandwiching it in between two sets of O(1g n)-node binary 
trees. While linear cost concentrators have been known for 
some time [6], [17], this is the first such concentrator with 
O(1gn) routing time. We must also contrast this concentrator 
with those given in [5] and [lo]. If the prefix sum is carried out 
in a bit-serial fashion as described in [5], then the concentrators 
in [5] and [lo] give O(n1gn) cost and O(1gn) routing time, 
both at bit-level. Using a bit-serial prefix sum to compute 
the ranks in our construction gives a concentrator with O(n)  
bit-level cost and O(lg2 n)  bit-level routing time. 

Using these bit-level complexities, our radix permuter has 
O ( n  lgn)  bit-level cost and O(lg3 n)  bit-level routing time 
whereas the permutation network given in [lo] has O(n  lg2 n)  
bit-level cost and O(lg2 n)  bit-level routing time by taking into 
account Cormen's bit-serial prefix ranking circuit. It should 
also be pointed out that, when operated in a bit-serial fashion, 
Batcher sorters also give O(lg2 n)  bit-level routing time at 
O(n lg2 n)  bit-level cost. 

As for future work, it still remains open whether or not a 
permutation network can be constructed with O ( n  lg n)  cost 
and O(1gn) routing time where the constants hidden in the 0 
notations are reasonably small, e.g., 5 10. The recent network 
constructions given in [2] and [12] seem to provide progress in 
this direction, but the fact that they must randomly generate the 
expanders in their networks to secure small constants makes 
these constructions impractical. Another direction that is worth 
pursuing is to determine whether the network given here can 
route as efficiently in the presence of faults. This problem 
was considered in [18] for fixed topology networks, and more 
recently in [2] for nonblocking networks. It will be worthwhile 
to develop fault tolerant routing schemes for the permutation 
network of this paper as well. 

APPENDIX 

A network with n inlets and q outlets. 
Cost of an (n, fn)-distributor. 
Depth of an (n, f n)-distributor. 
Routing time of an (n, fn)-distributor. 
Cost of an n-inlet concentrator with 
parameter m. 
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Depth of an n-inlet concentrator with 
parameter m. 
Routing time of an n-inlet concentrator 
with parameter m. 
Cost of an (n ,  yn)-concentrator. 
Depth of an (n ,  yn)-concentrator. 
Routing time of an (71, yn)-concentrator. 
Cost of an n-inlet radix permuter. 
Depth of an n-inlet radix permuter. 
Routing time of an winlet radix permuter. 
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